
Video Title: “Video 2: Understanding data sets as texts”
From “Rhetmap.org: Composing Data for Future Re-Use and Visualization”
by Chris Lindgren and Jim Ridolfo
(Kairos XX.X PraxisWiki)

Welcome back to The Missing Tutorial. This is video number two, understanding data sets as
texts. The purpose of this video are the following two main objectives: First, we're going to
learn how to read common data formats and structures that you will encounter out there in the
wild, and the second main objective is understanding the links between these types of data
with their textual modes and how we can maybe start to see some connections between
potential visual modes. Of course, there are many, but I'm gonna show you some of the more
obvious connections to get us thinking more clearly about their interconnections, okay?

Let's get going.

Okay, how to read CSV data, or comma-separated values. In this section, I'm going to review
this particular example, CSV data format, and the data involved here in relationship to the chart
that it creates that you see right here. I'll also talk about how this is actually one of the original
charts that I was looking through in the D3 gallery as I was thinking about trying to create this,
this temporal chart. And finally, I'm also going to compare this CSV data to Ridolfo's tabular
data that you see right here. So we can start to see some cross connections between essentially
the textual modes that we see in the CSV data and the Google Sheets data within the visual
modes that we see represented in these charts.

So let's begin.

Here we have CSV data, and there's some ways we can describe CSV data. One description is
called a flat file because it's in two dimensions. And by two dimensions, we can represent that
visually as the following: Notice how there's line breaks between, let's say, these different lines
that we see here. So those represent rows. And as we can see, every new line break, we can
assume then, that's a new row of observations, of data. So I can draw a little line down here
saying, okay, if we go down linearly, we can then see one dimension of the data, and then if we
go horizontally this way, we can see another dimension at work.

Let's take a peek here. We have a couple things going on. We have this first line right here.
Notice how it's different. This is called the header, and this includes the name of the columns.
And then every line thereafter is assumed to be the beginning of the data. That is, for each
column then, you can see now how the commas come into place. So if I highlight some of these
commas here in this first line, oops, almost missed one. We have in the header, we have, let's
see here, year. Let me switch colors for a sec. We have year and then we have the actual value
of 1980. Then we have variableA, followed by underneath it, if we follow the scheme here, the
second comma-separated value would be 70 and so on and so forth. And this repeats
throughout the entire file. So that's how you read a CSV file. Let me erase some of that. If we
compare that to Ridolfo's data in a table over here, we see similar things at work in a table.

So if I grab my highlighter, or actually I'm gonna grab my lines, we can see here we have the
data moving vertically and horizontally in the same way. The only thing that might be different
is you're wondering, like, okay, well, what about this little space right here? Ooh, that's ugly.
This little space right here. Well, it's an assumption built into Ridolfo's table. We might label
that in a CSV as weeks, and then we would assume then, instead of variable A, B, C, and so on,
we'd have this particular year as labels, years as labels. We can modify them as needed, but
then you can kind of see how, okay, the idea of two dimensions here is we have, we can
compare week one to then the year and do that multiple times. And so the idea of two
dimensions and the ability to cross compare something across a horizontal and vertical axis are
embedded in both the CSV and table textual modes, if you will.

Now if we cross over now to the charts, recall how the CSV data, the textual modes, we have
the, again, horizontal and vertical two dimensional modes. We have the header with the
column information that then track the separation of values per column with the commas. So
we have 1980, the year through 2015, and then we have all those variables A through D with
different values that are then charted as follows:

So let's take a peek here. We have along the bottom, x-axis moving horizontally, the years. And
then remember how every year had those different variables? So those four variables are then
posted along the y-axis. So that's the second dimension. Same as the CSV. So it's just another
way to represent, correct? So we can pull out the data, show it differently, so we can perhaps
see it better over time. This was also influential in my own thinking, since I thought, oh, my
variables are years. So each market year will have its own line, and that means if we go back to
the tabular data, what becomes the x-axis? Well, it's the weeks. Each week is listed across the
x-axis, if we go here. Here are our weeks along the x-axis, along of course, y then would be the
number of postings and then our variables are the years. So we can compare for each year and
each week of that year how many posts were there is the embedded question in that particular
data set.

So that's how we can start to see some connections between the textual and visual modes. It
may seem obvious, but hopefully we can, it'll open your eyes to, perhaps, some other kinds of
charts that you see out there that might use something like a CSV data, and how to structure
that information. But the main goal here, remember, how do we read something like this, this
CSV data. It is a highly common, prevalent format that you might encounter, you will
encounter. So it's good to know how they work and the best way to structure them and the
assumptions that are usually built into them and how they compare something across two
dimensions.

Okay, so let's move on to the JavaScript object notation data format.

Welcome back. This is how to read JSON, or JavaScript Object Notation. And I'm going to show
you, again, the relationships between the textual modes of JSON objects and how they could be
potentially rendered visually as a certain kind of diagram. So here on the left side, we see the
visualization. And on the right side, we actually, this is the data for this visualization. So my plan

is to walk you through the connections between the data and the visualization, how to read this
JSON object, because it looks, if you've never seen one before, it might look kind of
intimidating. How do you read this? There's visual cues that you might grab onto right away,
with the hierarchies, but let's walk through it together. So I'll supply, again, these URLs and the
links to these particular items, but if they're not around, you can definitely just follow along
right here.

Okay, so first, how did I even know where to look for this data? If you're curious about learning
about data and data visualizations out there, with some examples you find in the wild, one
thing I'd like to show you is, well, you have browsers and you can always view the source of a
page. It's a very powerful thing, right? So if I right click, click on View Source, I get this. So if you
have an underlying knowledge about how to read HTML, webpages, you can navigate your way
a little bit. And once you get stronger with your programming with JavaScript, you should be
able to navigate these as well. But once you start also reading data, you should be able to
assume what kinds of... At one point, this project obviously has to use data. So I can sometimes
narrow down where it is and then look at it. That helps me understand what's going on in the
visualization and how they're connected, the textual data values with the actual visualization
somebody created. So it's a significant part of the process for me when I learn something as
well.

So if I click Command + F4, Control + F, which is finding something on a page textually, I'll type
in dot, in this case, I know it's .json, and I could also assume so. Also then see how there are
some hits. We're not learning how to read JavaScript yet in the tutorial, but we can see at this
moment right here that this is where they actually pull in the data to then visualize it later in
this code. D3.json is, D3 represents the idea of the D3 code library that's being used here that
you can go back up here where they pull it in. So the browser knows to use it 'cause it has a
method called JSON, which will retrieve some kind of file, in this case, a JSON file. Sure enough,
in the folder that houses this same HTML document, the path here to the data file is data.json.

So what I did is, I copied this, and if you look again on the right side here, you'll see the URL is
exactly the same except it has /data.json and sure enough within the same folder as the HTML
file, there's the data. Cool, so if you wanna peruse things in the wild, View Page Source, again, is
always a beautiful thing. All right. What I wanna do now is compare this data over here with
how they visualized it on the left side. Well, it's not too... Well, it's cumbersome to be able to
walk you through the data, the JSON object here without being able to collapse different things
and highlight certain parts of it, rather than this one big blob of it. (laughs)

So here's what I did. I copied, or I selected everything, copied it, and then I went to a prettifier
app on the web. And you can just type in JSON pretty or prettify or format, whatever. It should
give you something where I copy it in and then I can click on Make Pretty. It was actually pretty
pretty already (laughs) but here's what this does for me.

Check this out.

Note here that there's a curly brace, and a curly brace in JavaScript and some other
programming languages denotes this idea of what follows is an object. And in this case, a JSON
object is what's called an object array.

So here's what I'm gonna do. I'm gonna close this completely. Notice how there has to be a
closing curly brace. That's what's called scope. Scope is, you start something denoted by some,
usually some kind of syntax. So in this case, the notation is curly braces, object begin, and close
curly braces, object close. So the complete object is encapsulated by a curly brace, curly braces
as you see here.

All right, well let's open it up a little bit. And now I'm gonna do something else. I'm gonna do
this. I'm gonna close out this one. Inside this JSON object, there's actually only two values, two
objects that are, as you can see here, look, there's a comma that separates them. One's called
name. This is called, on one side, a key, colon, and then on the other side of the colon, there's
always gonna be some kind of data type. In this case, we see two quotation marks that are
empty, actually. Quotation marks like this mean a string. That is, usually find some kind of text
in there.

So right now we see the value of name, or sorry, key, name, value, well, nothing. If we look at
the visualization, check this out, we have the first instance of this chart that is hierarchal with
nothing here.

Hmm. Let's go back to the data. Notice how there's a second value, a second object, with a key
name children. And then, now let's take a look. Instead of it being a string data type, we have
something else, colon, value of what? What is that? We have an open square bracket and a
closed square bracket. That denotes what's called an array, a list of something. Let's open up
that list of children. There's quite a bit. Let's collapse it, though. This is the practice you need to
do. Oh, there's only two objects that are in this array of children.

Okay, well let's take a look at the visualization again. I'm gonna open up that first instance
that's unnamed and now we have one, two children. It's pretty on the nose with regards to that
key name, by the way, right? Children. So I thought that might help us here.

All right, well let's look at the line numbers here that are represented. We have four and it just
goes right away to 57. That's gonna tell you there's a lot of content in between. So let's open up
the first child. We have the name, key, value, a string of text-interactive tools. Some particular
patterns you're starting to see already. I'm gonna notice here how there's another one, key free
true, I don't even know what that means because I haven't looked at the code yet. There's a
description with another text value. Again, I'm not sure how that's used. I might, maybe a tool
tip, if I hover over. I don't know, let me check. Yeah, there we go. We see a little tool tip,
interactive authoring tools. So they coded it so that when you hover, you get that message.

Cool.

Okay, well now we see another instance of a key name children with another array of objects.
Because, again, new object is always, when you see that curly brace, that means it has to also
be closed somewhere. We have two children under Interactive Tools, apparently. Let's check
that idea. Sure enough, we have browser-based and desktop. Is that it? Browser-based, same
thing, description. And so it's following a pattern. You can start to see the patterns. It also has
children, which we saw. I'll close that out. And then the second child should be, what, desktop?
Sure enough, it is. And it also, let's see, it has two children. Let's see here, maybe I missed
something here. Browser-based, oh, it has many children. I just clicked the wrong one, so there
we go. So it has an array of objects and it has four. So we should have four and two, four in the
browser-based, one, two, three, four. Two in the desktop, boom.

So just through this quick glancing of, okay, here's a JSON object. There's a hierarchy being
constructed of objects that are in lists, separated by commas, but you also have to consider
how there's a key value pair to create those objects. So we have an object, in this case, the first
hierarchical level is no name, and then we have children and then a list of children. We know
that there's two on that level. We have Interactive Tools and coding, so I'm gonna open up that
one with, it has its children. And we could keep going down the line, right?

I won't belabor the point, but I hope you can start to see that, in this case, it's rather on the
nose, again, that hierarchy is represented visually and textually within the JSON object. We
have denotations through keys, listed as you see here, that are separated by commas, but you
can always start new levels of hierarchy by creating a new object, or a list of objects even
separated by commas themselves. So we have Interactive Tools, open, close, coding, open,
close. It can also have a list of children objects itself, right? Here's a list of children. Here's the
first one. Browser-based, we close it. Comma, start up the next one, desktop.

One last thing I'll have you kind of understand and see and make sure you understand is that
the commas separate every new object. But if you get to the last object, you'll see how there is
actually no comma, correct? So the comma is to suggest that there's something after. It tells
the computer, there's something new coming, so check for it. So if I were to put a comma here
and try to run the code for this visualization, it wouldn't fly. It would actually throw an error and
tell me they're expecting something. So that's one little small detail to also note.

All right, you may be wondering, why am I having you learn how to read JSON? One, it's, again,
a very common data format that you're going to encounter, especially if you code with
JavaScript in web-based data visualizations, including, especially, if you're using the code library
D3.js code library. Another reason specific to this tutorial is that I had to retrieve Ridolfo's data
as a JSON object. So even though the market comparison data that Ridolfo created is in a
Google Sheet in a tabular format, that originally I talked about it in relationship to CSV, the CSV
data format. The way I had to retrieve this dynamically is through a JSON object.

So how does that look? Well, let's take a look. If I get to the code here, and I'm not assuming
you're learning how to read code yet, but what I can do is show you something real quick, what
it looks like as a JSON object. So I can how you here in my documented code, I have a link to

Ridolfo's JSON feed version of his data. So I'm gonna go back. So here it is again in a Google
Sheet, and Google enables me to then render it as the following.

Wow, right? (laughs) Can you imagine opening this up for the first time and trying to make
sense of it? It's giving me a lot more than I ever would need in the data. But how would we
even approach this?

Let's use that Prettify app again. And let me just show you what's going on here. It'll be good
practice.

So I'm gonna open this up in a new window since we don't need to see everything, and I'm
going to replace what we had before. I just copied and pasted Ridolfo's JSON feed into here. I'm
gonna make it pretty over here. What do we notice right away? Open, close curly brace,
suggesting one JSON object. But inside of it, let's take a look. We have, at the first level, three
key value pairs, version in coding and feed. You can take a guess where I had to kind of dig into,
what level. It's probably feed, right? So these are just headers, if you will, of version numbers
and then coding information. Coding is just a standard unit code, international standard for all
character types. That's about as much as we need to know here.

But inside feed, we have a lot going on as well. Let's take a look. I have ID, updated. I'm just
gonna keep going through the line. Category, title, link, author, some other things.

Oh, there we go.

Inside feed, I have one, two, three, four, five, six, seven, eight, nine, 10, 11, and 12 items at the
next level. So within the data object, I have feed. Inside feed, I have a lot of things. So this is
how I went about it. This is how I read JSON objects. I try to simplify them. For the sake of time,
I want us to look at the last one, under entry. So Google has defined a standard for their Sheets
JSON object and entries are where we have our data. Inside there we can see, look, entry is
actually gonna be what? What is this called again? It's a square bracket, so it's opening it up and
closed. That means it's a list of something. Most likely it's gonna be what? A list of objects. So
we could just keep going through here and...

(humming)

Keep going, how many are there? If you knew the data and how weeks Ridolfo looks at, it's 17.
And sure enough, if you counted them all, we got 'em right there, weeks one through 17. Inside
each entry, we then have multiple things we could look at, ID, updated, category, title, content,
link, and then all of a sudden, we have something that should look familiar all of a sudden. We
have this gobbly-gook (laughs) stuff right here that means something with regards to how, one,
Google defines certain cell values. But also it may be perhaps how Ridolfo might have defined
something. I'm not sure. I never looked into that. But what I knew is that there's a key of this
value that then has a list of objects inside of it, or multiple objects inside of it. It's actually not a
list, it's just multiple objects.

So the first object, we have even, inside each one, another nested... Sorry, that was what I was
alluding to. It has another nested key value pair. So we might take a guess that T means the cell
value and how it's been typed in the Sheets. When I say typed, I mean the data type. So T might
represent what? Text of some kind or maybe some kind of open text value. So here we have a
string, week one, and then all the week one values per, what, year. You can see how the year
data is not here, right? That year label, I should say. So that's something I noted right away. I'm
thinking to myself, hmm. I have week... I have each week as an object inside of entry, and I get
to these particular per instances. Let me close out that one. And I have week two here, and
rinse and repeat. But I don't have the year information.

Hmm.

How am I going to restructure this 'cause I'm gonna need that, correct? I can't just not have
that label. So how do I put them together? It's not anywhere else either. So that's the one thing
that I was thinking, like, okay there's gonna be some data processing there. And I'm gonna have
to think about how to actually reorganize the information so that I can also make sure I bundle
the year data in relationship to this week, per week postings. So that's, if you will, how I came
to the realization, oh, okay, I got some work to do before I create that temporal chart that's
multi-lined.

This has hopefully helped you provide some tools to take something like a JSON blob object and
turn it into something you can really simplify, start to see the hierarchy and the different types
of data that can be included inside of a JSON object. There are other things that can be
included, and of course this will look differently based on things you find in the wild. But again,
this is a baseline video to help you get there and feel more comfortable about at least where to
begin.

And so let's move on to the final video that has to do with a particular data structure called a
matrix. In this part, we're gonna learn how to read what's called a matrix, which is just a list of
lists that help you develop some cross comparisons to see what kinds of relationships are
between those different variables.

So one common visualization that you might be aware of is a relational chart called a chord
diagram. And in this example here on Nadieh Bremer's page Visual Cinnamon is a very
particular kind of chord diagram. But it's a great example because she breaks down the
relationship between the matrix that she developed in relationship to her chord diagram idea.
And in this case, we have two main categories of variables. We have variable A, B, and C on one
side. And on the other, we have X, Y, and Z. And in this example case, these are just abstracted
general names for, as we'll see below, values having to do with education versus occupation.

So we have six variables that have been broken up into two main categories visually here on
this chart, and it then shows you the persistent links, the amount by the bandwidth, right, and
connecting to certain other variables over in the other set. How did that become a thing and
how is that actually connected to the data set itself?

If we look down here, this is what we call a matrix. So a matrix, as Bremer notes here, are
meant to help you cross compare things. So how do you read this? We actually have, again,
kind of this idea of a two dimensional thing. But it's ordered in such a way that there's actually
more going on than just, let's say, a simple CSV. We have repeating variables. So we have,
again, X, Y, Z, C, B, A connect to the main variables we just saw before. And in this particular
case, we have lines that Bremer provides for us that are implicit in the structure of the data.

So what we do is we do it like this. We compare the idea of how many times this X connect to X,
X to Y, X to Z. Obviously not any because in this case, they are part of the same category, but
now we have X to C. Oh, they can be compared or there's a link there 10 times, X to B five, X to
A 15 times. So if we go back up to the chart real quick and compare X to those X occupations to
these values of C, B, A in education, we have X to A, X to C here in yellow, and then X to B here,
and B was five, I believe. So that's why it's the thinnest band between the two.

So that's how you read a matrix, and she breaks it down easily that I won't belabor here. But
the main goal to see is how you organize your information in the matrix to facilitate cross
comparison and really correlation between existing variables in a data set. How many times do
they overlap? Another name for it is co-occurrence. And so how many times do these co-occur?

And that's how you read a matrix.

And how does this look in a code and why did I say it was a list within a list? If you look down at
Bremer's note, is this what it would look like in JavaScript, you can define a matrix. And then
you can see here. Remember how square brackets mean that's a list? And it ends here. But
within this list we have one, two, three, four, five, six lists, each representing the different
variables. Now we can see how this idea, we have, again, where we actually get those values so
cross comparisons connect back up to here and that facilitation of it, right?

So that's how matrices work. There's actually a lot more statistical knowledge bound up
matrices that I won't belabor here, but the whole idea is, how can we test inter-relationships
between variables in a data set? That's what a matrix is designed to do. It's a more complex
form of comparison, based on what kinds of questions you have of the data. And then
obviously, too, that's connected to the way you'd wanna visualize it. One example that I think is
widely used is the chord diagram.

And again, Nadieh Bremer's work and her blog posts are really good at breaking down, how did
she get from her data to the actual visualization. So here's a great example. If you care to read
more, this is why I highlighted this blog post here.

Okay, those are the three main types of data formats that I really wanted to highlight in this
tutorial series. So I hope you have a better sense about how to read CSV, read a JSON, Object
Notation JSON file, as well as understand that curly braces and square brackets mean different
things. Commas help delimit the amount of things within, let's say, these lists and objects and
objects that have lists inside of them, right? So we can see already that these forms of data sets

and different formats provide a really interesting, complex capacity to define relationships and
then ask questions and facilitate an analysis. That's what we're trying to do with visualization is
test ideas we have about something in the world. And then visualizations are meant to then
highlight, illuminate some aspect of that.

So I hope we can take this new knowledge about how to read data sets in different formats and
structures into the third video of this series where we actually look at the code of the Rhetmap
case. And that's the next part. How do we take a look at how I took Ridolfo's data and
processed it into the visualization that we see on the web right now?

